If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-35=0
a = 8; b = 0; c = -35;
Δ = b2-4ac
Δ = 02-4·8·(-35)
Δ = 1120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1120}=\sqrt{16*70}=\sqrt{16}*\sqrt{70}=4\sqrt{70}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{70}}{2*8}=\frac{0-4\sqrt{70}}{16} =-\frac{4\sqrt{70}}{16} =-\frac{\sqrt{70}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{70}}{2*8}=\frac{0+4\sqrt{70}}{16} =\frac{4\sqrt{70}}{16} =\frac{\sqrt{70}}{4} $
| -2p=-6-p | | 1=13+x | | 4/5x+1/4=5/6 | | y-8=15y-29 | | -10-g=-2g | | -2(3x-2)+4=11 | | 50+2x=50,000 | | 7u+10=8u | | 2x=3/2x+30 | | 10n+3=12 | | 10x-5=5(x+4) | | y-8=15y-2 | | x+6.2=5.3 | | 10n+2=9 | | 50+2.5x=50,000 | | 6+4x+40=180 | | (3.5x)+(3x-5)=(x+35)+(4x-10) | | 12x-2(2x-6)=7x+13 | | 5+50x=50,000 | | y+2/3=-4 | | 50+0.4x=50,000 | | (4x+15)=(2x+12)+(5x-12) | | -18-3x=-6x-3 | | 2x+12=7x+37 | | x-8=15x-29 | | 1x-12=11 | | U^2+7u=-12 | | 3n-7=47 | | 1/3(x-6)+5=7 | | .5d-7=4 | | 2y-8=-4 | | (10x+7)=(14x-1) |